赵玉政 教授  博士生导师


E-mail: 2. Wang, A., Zou, Y., Liu, S., Zhang, X., Li, T., Zhang, L., Wang, R., Xia, Y., Li,X., Zhang, Z., Liu, T., Ju,Z., Wang, R.*Loscalzo, J., Yang, Y.*Zhao, Y.*Comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo using highly responsive biosensors. Nature Protocols, 2024, 19(5), 1311-1347.

3.  He, J., Wang, A., Zhao, Q., Zou, Y., Zhang, Z., Sha, N., Hou, G., Zhou, B., Yang, Y., Chen, T., Zhao, Y.*, Jiang, Y.*RNAi screens identify HES4 as a regulator of redox balance supporting pyrimidine synthesis and tumor growth. Nature Structural & Molecular Biology, 2024, 31(9), 1413-1425.

4.  Zhao, Y.*, Jiang, Y.*HES4 controls redox balance and supports pyrimidine synthesis and tumor growth. Nature Structural & Molecular Biology, 2024, 31(9), 1315-1316.

5.   Li, X., Zhang, Y., Xu, L., Wang, A., Zou, Y., Li, T., Huang, L., Chen, W., Liu, S., Jiang, K., Zhang, X., Wang, D., Zhang, L., Zhang, Z., Zhang, Z., Chen, X., Jia, W., Zhao, A., Yan, X., Zhou, H., Zhu, L., Ma, X., Ju, Z., Jia, W., Wang, C.*, Loscalzo, J., Yang, Y.*, Zhao, Y.*Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease. Cell Metabolism2023, 35(1), 200-211.

6.  Dou, X., Fu, D., Long, Q., Liu, S., Zou, Y., Fu, D., Xu, Q., Jiang Z., Ren, X., Zhang, G., Wei X., Li Q., Campisi, J., Zhao, Y.*, Sun Y.*. PDK4-dependent hypercatabolism and lactate production of senescent cells promotes cancer malignancy. Nature Metabolism2023, 5, 1887-1910.

7.  Jia, M., Yue, X., Sun, W., Zhou, Q., Chang, C., Gong, W., Feng, J., Li, X., Zhan, R., Mo, K., Zhang, L., Qian, Y., Sun, Y., Wang, A., Zou, Y., Chen, W., Li, Y., Huang, L., Yang, Y.*, Zhao, Y.*, Cheng, X.*. ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Science Advances, 2023, 9, eadg4993.

8.   Huang, D., Zhang, C., Xiao, M., Li, X., Chen, W., Jiang, Y., Yuan, Y., Zhang, Y., Zou, Y., Deng, L., Wang, Y., Sun, Y., Dong, W., Zhang, Z., Xie, L., Yu, Z., Chen, C., Liu, L., Wang, J., Yang, Y.*, Yang, J.*, Zhao, Y.*, Zheng, J.*. Redox metabolism maintains the leukemogenic capacity and drug resistance of AML cells. PNAS, 2023, 120 (13), e2210796120.

9. Chen, C.*, Lai, X., Xie, L., Yu, Z., Dan, S., Jiang, Y., Chen, W., Liu, L., Yang, Y., Zhang, Y., Huang, D.*Zhao, Y.*Zheng J.*. NADPH metabolism determines the leukemogenic capacity and drug resistance of AML cells. Cell Reports, 2022, 39(1), 110607.

10. Ma, C., Zheng K., Jiang, K., Zhao, Q., Sha, N., Wang, W., Yan, M., Chen, T., Zhao, Y.*, Jiang, Y.*. The alternative activity of nuclear PHGDH contributes to tumor growth under nutrient stress. Nature Metabolism, 2021, 3(10), 1357-1371.

11.  Chen, C., Hao X., Lai X., Liu L., Zhu J., Shao H., Huang D., Gu H., Zhang T., Yu Z., Xie L., Zhang X., Yang Y., Xu J.*, Zhao Y.*, Lu Z.*, Zheng J.*. Oxidative phosphorylation enhances the leukemogenic capacity and resistance to chemotherapy of B-cell acute lymphoblastic leukemia. Science Advances, 2021, 7, eabd6280.

12.  Zou, Y., Wang, A., Huang, L., Zhu, X., Hu, Q., Zhang, Y., Chen, X., Li, F., Wang, Q., Wang, H., Liu, R., Zuo, F., Li, T., Yao, J., Qian, Y., Shi, M., Yue, X., Chen, W., Zhang, Z., Wang, C., Zhou, Y., Zhu, L., Ju, Z., Loscalzo, J., Yang, Y.*, Zhao, Y.*. Illuminating NAD+ metabolism in live cells and in vivo using a genetically encoded fluorescent sensor. Developmental Cell, 2020, 53(2), 240-252.

13. Gu, H., Chen, C., Hao, X., Su, N., Huang, Dan., Zou, Y., Lin, S., Chen, X., Zheng, D., Liu, L., Yu, Z., Xie, L., Zhang, Y., He, X., Lai, X., Zhang, X., Chen, G., Zhao, Y.*Yang, Y.*, Loscalzo, J., Zheng, J.*. MDH1-mediated malate-aspartate NADH shuttle maintains the activity levels of fetal liver hematopoietic stem cells. Blood, 2020, 136 (5), 553-571.

14. Zou, Y., Wang, A., Shi, M., Chen, X., Liu, R., Li, T., Zhang, C., Zhang, Z., Zhu, L., Ju, Z., Loscalzo, J., Yang, Y.*, Zhao, Y.*Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nature Protocols, 2018, 13(10), 2362-2386.

15. Tao, R.#, Zhao, Y.#, Chu, H.#, Wang, A., Zhu, J., Chen, X., Zou, Y., Shi, M., Liu, R., Su, N., Du, J., Zhou, H., Zhu, L., Qian, X., Liu, H., Loscalzo, J., and Yang, Y. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nature Methods, 2017, 14(7), 720-728.

16.  Zhao, Y., Wang, A., Zou, Y., Su, N., Loscalzo, J., and Yang, Y. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD+/NADH redox state. Nature Protocols, 2016, 11(8), 1345-1359 (Cover story).

17.  Zhao, Y., Hu, Q., Cheng, F., Su, N., Wang, A., Zou, Y., Hu, H., Chen, X., Zhou, H., Huang, X.,Yang, K., Zhu, Q., Wang, X., Yi, J., Zhu, L., Qian, X., Chen, L., Tang, Y., Loscalzo, J., and Yang, Y. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metabolism, 2015, 21(5), 777-789.

18. Zhao, Y., Jin, J., Hu, Q., Zhou, H.M., Yi, J., Yu, Z., Xu, L., Wang, X., Yang, Y., and Loscalzo, J. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metabolism, 2011, 14(4), 555-566.


综述著作*通讯作者)💂🏻‍♂️: 

1. Zhang, Z., Chen, C.Li, X.Zheng, J.*Zhao, Y.*Regulation of leukemogenesis via redox metabolism. Trends in Cell Biology, 2024, 34(11), 928-941

2. Li, X.*, Wen, X., Tang, W., Wang, C., Chen, Y., Yang, Y., Zhang, Z.*Zhao, Y.*Elucidating the spatiotemporal dynamics of glucose metabolism with genetically encoded fluorescent biosensors. Cell Reports Methods, 2024, 4(11), 100904.

3. Consortium, A.B., Bao, H., Cao, J., Chen, M., Chen, M,, Chen, W., Chen, X., Chen, Y., Chen, Y.,  Chen, Y., Chen, Z., Chhetri, J., Ding, Y., Feng, J., Guo J., Guo M., He, C., Jia, Y., Jiang, H., Jing, Y., Li, D., Li, J., Li, J., Liang, Q., Liang, R., Liu, F., Liu, X., Liu, Z., Luo, O.J., Lv, J., Ma, J., Mao, K., Nie, J., Qiao, X., Sun, X., Tang, X., Wang, J., Wang, Q., Wang, S., Wang, X., Wang, Y., Wang, Y., Wu, R., Xia, K., Xiao, F., Xu, L., Xu, Y., Yan, H., Yang, L., Yang, R., Yang, Y., Ying, Y., Zhang, L., Zhang, W., Zhang, W., Zhang, X., Zhang, Z., Zhou, M., Zhou, R., Zhu, Q., Zhu, Z., Cao, F.*, Cao, Z.*, Chan, P.*, Chen, C.*, Chen, G.*, Chen, H.*, Chen, J.*, Ci, W.*, Ding, B.*, Ding, Q.*, Gao, F.*, Han, J.*, Huang, K.*, Ju, Z.*, Kong, Q.*, Li, Ji*, Li, J.*, Li, X.*, Liu, B.*, Liu, F.*, Liu, L.*, Liu, Q.*, Liu, Q.*, Liu, X.*, Liu, Y.*, Luo, X.*, Ma, S.*, Ma, X.*, Mao, Z.*, Nie, J.*, Peng, Y.*, Qu, J.*, Ren, J.*, Ren, R.*, Song, M.*, Songyang, Z.*, Sun, Y.*, Sun, Y.*, Tian, M.*, Wang, S.*, Wang, S.*, Wang, X.*, Wang, X.*, Wang, Y.*, Wang, Y.*, Wong, C.CL*, Xiang, A.P.*, Xiao, Y.*, Xie, Z.*, Xu, D.*, Ye, J.*, Yue, R.*, Zhang, C.*, Zhang, H.*, Zhang, L.*, Zhang, W.*, Zhang, Y.*, Zhang, Y.*, Zhang, Z.*, Zhao, T.*, Zhao, Y.*, Zhu, D.*, Zou, W.*, Pei, G.*, Liu, G.*. Biomarkers of aging. Science China Life Sciences2023, 66893-1066.

4.  Ren J., Song M., Zhang W., Cai J., Cao F., Cao Z., Chan P., Chen C., Chen G., Chen H., Chen J., Chen X., Ci W., Ding B., Ding Q., Gao F., Gao S., Han J., He Q., Huang K., JuZ., Kong Q., Li J., Li J., Li J., Li X., Liu B., Liu F., Liu J., Liu L., Liu Q., Liu Q., Liu X., Liu Y., Luo X., Ma S., Ma X., Mao Z., Nie J., Peng Y., QuJ., Ren R., Song W., Songyang Z., Sun L., Sun Y.E., Sun Y., Tian M., Tian X., Tian Y., Wang J., Wang S., Wang S., Wang W., Wang X., Wang X., Wang Y., Wang Y., Wong C., Xiang A.P., Xiao Y., Xiao Z., Xie Z., Xiong W., Xu D., Yang Z., Ye J., Yu W., Yue R., Zhang C., Zhang H., Zhang L., Zhang X., Zhang Y., Zhang Y., Zhang Z., Zhao T.Zhao Y., Zhou Z., Zhu D., Zou W., Pei G., Liu G. The Aging Biomarker Consortium represents a new era for aging research in China. Nature Medicine2023, 29, pages2162–2165.

5.  Chen, W., Liu, S., Yang, Y., Zhang, Z.*, Zhao, Y.*. Spatiotemporal Monitoring of NAD+ Metabolism with Fluorescent Biosensors. Mechanisms of Ageing and Development, 2022, 204, 111657.

6.  Li, T., Zou, Y., Liu, S., Yang, Y., Zhang, Z.*, Zhao, Y.*. Monitoring NAD(H) and NADP(H) dynamics during organismal development with genetically encoded fluorescent biosensors. Cell Regeneration, 2022, 11, 5.

7.  Zhang, Z., Cheng, X., Zhao, Y.*, Yang, Y.*. Lighting up live-cell and in vivo central carbon metabolism with genetically encoded fluorescent sensors. Annual Review of Analytical Chemistry, 2020, 13, 293-314.

8.  Zhang,Z., Chen, W., Zhao, Y.*, Yang, Y.*. Spatiotemporal imaging of cellular energy metabolism with genetically-encoded fluorescent sensors in brain. Neuroscience Bulletin2018, 34(5), 875-886.

9. Zhao, Y.*, Zhang,Z., Zou, Y., Yang, Y.*. Visualization of nicotine adenine dinucleotide redox homeostasis with genetically encoded fluorescent sensors, Antioxidants & Redox Signaling, 2018, 28(3), 213-229.

10. Zhao, Y.*, Zhang,Z., Yang, Y.*. Monitoring intracellular redox metabolism with genetically encoded fluorescent sensors. Scientia Sinica Vitae, 2017, 47:508-521.

11. Zhao, Y.*, Yang, Y.*. Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD+/NADH sensors. Free Radical Biology & Medicine2016, 100, 43-52.

12.  Zhao, Y., Yang, Y.*. Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Current Opinion in Biotechnology, 2015, 31, 86-92.

13. Zhao, Y., Yang, Y., and Loscalzo, J.Real-Time Assessment of the Metabolic Profile of Living Cells with Genetically  Encoded NADH Sensors. Methods in Enzymology, 2014, 542, 349-367. (ISBN978-0-12-416618-9)


部分合作论文

1. Zuo F, Jiang L, Su N, Zhang Y, BaoB, Wang L, Shi Y, Yang H, Huang X, Li R, Zeng Q, Chen Z, Lin Q, Zhuang Y, Zhao Y, Chen X, Zhu L, Yang Y. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA. Nature Chemical Biology, 2024, 20(10), 1272-1281.

2.  Zou J, Jiang K, Chen Y, Ma Y, Xia C, Ding W, Yao M, Lin Y, Chen Y, Zhao Y*, Gao F*. Tofacitinib citrate coordination-based dual-responsive/scavenge nanoplatform toward regulate colonic inflammatory microenvironment for relieving colitis. Advanced Healthcare Materials, 2024, 2401869.

3. Bai L, Wang Y, Wang K, Chen X, Zhao Y, Liu C, Qu X. Materiobiomodulated ROS therapy for de novo hair growth. Advanced Materials, 2024, 36, 2311459.

4.  Weng L, Tang W, Wang X, Gong Y, Liu C, Hong N, Tao Y, Li K, Liu S, Jiang W, Li Y, Yao K, Chen L, Huang H, Zhao Y, Hu Z, Lu Y, Ye H, Du X, Zhou H, Li P, Zhao T. Surplus fatty acid synthesis increases oxidative stress in adipocytes and induces lipodystrophy. Nature Communications, 2024, 15, 133.

5.  Li J, Hou W, Zhao Q, Han W, Cui H, Xiao S, Zhu L, Qu J, Liu X, Cong W, Shen J, Zhao Y, Gao S, Huang G, Kong Q. Lactate regulates major zygotic genome activation by H3K18 lactylation in mammals. National Science Review, 2024, 11, nwad295.

6.  Jiang L, Xie X, Su N, Zhang D, Chen X, Xu X, Zhang B, Huang K, Yu J, Fang M, Bao B, Zuo F, Yang L, Zhang R, Li H, Huang X, Chen Z, Zeng Q, Liu R, Lin Q, Zhao Y, Ren A, Zhu L, Yang Y. Large Stokes shift fluorescent RNAs for dual-emission fluorescence and bioluminescence imaging in live cells. Nature Methods, 2023, 201563-1572.

7.  Zhang D., Chen Z., Du Z., Bao B., Su N., Chen X., Ge Y., Lin Q., Yang L., Hua Y., Wang S., Hua X., Zuo F., Li N., Liu R., Jiang L., Bao C., Zhao Y., Loscalzo J., Yang Y., Zhu L. Design of a palette of SNAP-tag mimics of fluorescent proteins and their use as cell reporters. Cell Discovery, 2023, 9, 56.

8.  Sun H., Zhang Z., Li T., Li Ting, Chen W., Pan T., Fang S., Liu C., Zhang Y., Wang L., Feng G., Li W., Zhou Q.*, Zhao Y.*. Live-cell imaging reveals redox metabolic reprogramming during zygotic genome activation. Journal of Cellular Physiology, 2023, 238(9), 2039-2049.

9.  He M., Sun Yu., Cheng Y., Wang J., Zhang M., Sun R., Hou X., Xu J., He H., Wang H., Yuan Z., Lan M., Zhao Y., Yang Y., Chen X., Gao F. Spatiotemporally controllable diphtherin transgene system and neoantigen immunotherapy. Journal of Controlled Release, 2023, 355, 538-551

10.  Fang M., Li H., Xie X., Wang H., Jiang Y., Li T., Zhang B., Jiang X., Cao Y., Zhang R., Zhang D., Zhao Y., Zhu L., Chen X., Yang Y. Imaging intracellular metabolite and protein changes in live mammalian cells with bright fluorescent RNA-based genetically encoded sensors. Biosensors and Bioelectronics, 2023, 235, 115411.

11.  Liu, R., Yang, J., Yao, J., Zhao, Z., He, W., Su, N., Zhang, Z., Zhang, C., Zhang, Z., Cai, H., Zhu, L.,  Zhao, Y., Quan, S., Chen, X., Yang. Y. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding protein. Nature Biotechnology, 2022, 40, 779-786.

12.  Zhao J., Yao K., Yu H., Zhang L., Xu Y., Chen L., Sun Z., Zhu Y., Zhang C., Qian Y., Ji S., Pan H., Zhang M., Chen J., Correia C., Weiskittel T., Lin D. W., Zhao Y., Chandrasekaran S., Fu X., Zhang D., Fan H. Y., Xie W., Li H., Hu Z., Zhang J. Metabolic remodelling during early mouse embryo development. Nature Metabolism, 2021, 3, 1372-1384.

13.  He X., Wan J., Yang X., Zhang X., Huang D., Li X., Zou Y., Chen C., Yu Z., Xie L., Zhang Y., Liu L., Li S., Zhao Y., Shao H., Yu Y., Zheng J. Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models. Journal of Clinical Investigation, 2021, 131(4), e140242.

14.   Li T., Chen X., Qian Y., Shao J., Li X., Liu S, Zhu L., Zhao Y., Ye H., Yang. Y. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nature Communications, 2021, 12, 615.

15. Liu, K., Guo, C., Lao, Y., Yang, J., Chen, F., Zhao, Y., Yang, Y., Yang, J., Yi, J. A fine-tuning mechanism underlying self- control for autophagy: deSUMOylation of BECN1 by SENP3. Autophagy, 2020, 16(6), 975-990.

16. Li, X., Zhang, C., Xu, X., Miao, J., Yao, J., Liu, R., Zhao, Y., Chen, X., Yang Y. A single-component light sensor system  allows highly tunable and direct activation of gene expression in bacterial cells. Nucleic Acids Research, 2020, 48(6), e33.

17. Chen, X., Zhang, D., Su, N., Bao, B., Xie, X. , Zuo, F., Yang, L., Wang, H., Jiang, L., Lin, Q., Fang, M., Li, N., Hua, X., Chen, Z., Bao, C., Xu, J., Du, W., Zhang, L., Zhao, Y., Zhu, L., Loscalzo, J., Yang, Y. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nature Biotechnology, 2019, 37(11), 1287-1293.

18. Hao, X., Gu, H., Chen, C., Huang, D., Zhao, Y., Xie, L., Zou, Y., Shu, H., Zhang, Y., He, X., Lai, X., Zhang, X., Zhou, B., Zhang, C., Chen, G., Yu, Z., Yang, Y., Zheng, J. Metabolic imaging reveals a unique preference of symmetric cell division and homing of leukemia-Initiating cells in an endosteal niche. Cell Metabolism, 2019, 29(4), 950-965.

19. Cheng, F., Lu, W., Liu, C., Fang, J., Hou, Y., Handy, D., Wang, R., Zhao, Y., Yang, Y., Huang, J., Hill, D., Vidal, M., Eng, C., Loscalzo, J. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nature Communications, 2019, 10, 3476.

20. Zhu, X., Shen, W., Yao, K., Wang, H., Liu B., Li, T., Song, L., Diao, D., Mao, G., Huang, P., Li, C., Zhang, H., Zou, Y., Qiu, Y., Zhao, Y., Wang, W., Yang, Y., Hu, Z., Auwerx, J., Loscalzo, J., Zhou, Y., Ju, Z. Fine-tuning of PGC1α expression regulates cardiac function and longevity. Circulation Research, 2019, 125(7), 707-719.

21.  Liu, X., Zhang, F., Zhang, Y., Li, X., Chen, C., Zhou, M., Yu. Z., Liu, Y., Zhao, Y., Hao, X., Tang, Y., Zhu, L., Liu, L., Xie, L., Gu, H., Shao, H., Xia, F., Yin, C., Tao, M., Xie, J., Zhang, C., Yang, Y., Sun, H., Chen, G., Zheng, J. PPM1K regulates hematopoiesis and leukemogenesis through CDC20-mediated ubiquitination of MEIS1 and p21. Cell Reports, 2018, 23, 1461-1475.

22. Chen, X., Tian, M., Sun, R., Zhang, M., Zhou, L., Jin, L., Chen, L., Zhou, W., Duan, K., Chen, Y., Gao, C., Cheng, Z., Wang, F., Zhang, J., Sun, Y., Yu, H., Zhao, Y., Yang, Y., Liu, W., Shi, Y., Xiong, Y., Guan, K., and Ye, D. SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Reports, 2018, e45124.

23. Fang, Y., Liu, Z., Chen, Z., Xu, X., Xiao, M., Yu, Y., Zhang, Y., Zhang, X., Du, Y., Jiang, C., Zhao, Y., Wang, Y., Fan, B., Terheyden-Keighley, D., Liu, Y., Shi, L., Hui, Y., Zhang, X., Zhang, B., Feng, H., Ma, L., Zhang, Q., Jin, G., Yang, Y., Xiang, B., Liu, L., Zhang, X. Smad5 acts as an intracellular pH messenger and maintains bioenergetic homoeostasis. Cell Research, 2017, 27, 1083-1099.

24. Yang, K., Wang, M., Zhao, Y., Sun, X., Yang, Y., Li, X., Zhou, A., Chu, H., Zhou, H., Xu, J., Wu, M., Yang, J., and Yi, J. A redox mechanism underlying nucleolar stress sensing by nucleophosmin. Nature Communications2016, 7, 13599.

25. Yang, H., Zhou, L., Shi, Q., Zhao, Y., Lin, H., Zhang, M., Zhao, S., Yang, Y., Ling, Z., Guan, K., Xiong, Y., and Ye, D. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO Journal, 2015, 34, 1110-1125.

26. Wang, Y., Zhou, L., Zhao, Y., Wang, S., Chen, L., Liu, L., Ling, Z., Hu, F., Sun, Y., Zhang, J., Yang, C., Yang, Y., Xiong, Y., Guan, K., and Ye, D. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO Journal, 2014, 33, 1304–1320.




























  
























































































































































































































































































































































































































































































































































































































































杏悦2专业提供:杏悦2等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,杏悦2欢迎您。 杏悦2官网xml地图
杏悦2 杏悦2 杏悦2 杏悦2 杏悦2 杏悦2 杏悦2 杏悦2 杏悦2 杏悦2